def get_net(your_data, your_compute):
##add a model weights autosave
##do the weights need to be in the same configuration as in training in order to do inference?
##write a program that reads a har file and returns listing, price, and features.
##scale probabilities by 12 to maybe look more like chess. also, add a function that can take a list of tokens and return the most likely next token.
##george soros discovered that you can better control the governing of a country by buying the lesser politicians.
##in the same way, a great deal of money could be made by summing many edges accumulated over many small markets
##split the train/val so that both contain 1/3 of the 3 datasets.
##the way to get positive and negative numbers is to see if the value is above or below what we would
##expect based on the zipf distribution. values above zipf are positive, below are negative.
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import matplotlib.pyplot as plt
import numpy as np
import os
w = 1337
torch.manual_seed(w)
print(
"\n |",
"\n____________ __ -+- ____________ ",
"\n\_____ / /_ \ | \ _____/",
"\n \_____ \____/ \____/ _____/",
"\n \_____ _____/",
"\n \___________ ___________/",
f"\n /____\ {w} \n",
"\n 'def get_net' license MIT \n"
)
PATH = "/Users?"
PATH2 = "/Users?"
PATH3 = "/Users?"
# hyperparameters
batch_size = 16 # how many independent sequences will we process in parallel?
block_size = 64 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 100
learning_rate = 1e-3
device = 'cuda' if torch.cuda.is_available() else 'mps'
eval_iters = 200
n_embd = 256
n_head = 8
n_layer = 8
dropout = 0.30
# ------------
checkpoint_interval = 1000 # Save weights every 1000 iterations
checkpoint_path = "/users?" # Directory to save checkpoints
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open(PATH, 'r', encoding='utf-8') as f:
text1 = f.read()
with open(PATH2, 'r', encoding='utf-8') as f:
text2 = f.read()
with open(PATH3, 'r', encoding='utf-8') as f:
text3 = f.read()
text = text1 + text2 + text3
# here are all the unique characters that occur in this text
try:
encoder = tiktoken.get_encoding("gpt2")
except:
# Fallback to a different encoding if gpt2 fails
encoder = tiktoken.get_encoding("p50k_base")
print("gpt2 failed, using p50k_base")
tokdata = torch.tensor(encoder.encode(text), dtype=torch.long)
vocab_size = encoder.n_vocab # Instead of len(set(tokdata))
# Train and test splits
data = torch.tensor(encoder.encode(text), dtype=torch.long)
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2,-1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out # Remove the attention weights return
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))#addition to main data stream to prevent overfitting
x = x + self.ffwd(self.ln2(x))
return x
# super simple bigram model
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
def get_heart_of_truth(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# Crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# Get the predictions
logits, loss = self(idx_cond)
# Focus only on the last time step
logits = logits[:, -1, :] # (B, C)
# Apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# Sort all probabilities in descending order
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
# Get top 10 highest probabilities and their indices for display
top_probs, top_indices = sorted_probs[:, :10], sorted_indices[:, :10]
print(f"Top 10 tokens: {[encoder.decode([token.item()]) for token in top_indices[0]]}")
print(f"Their probabilities: {top_probs[0].tolist()}\n")
# Inform the user about the total number of tokens
print(f"Total tokens in vocabulary: {vocab_size}")
print("You can choose any rank from 1 to", vocab_size)
# Get user input for token selection
while True:
try:
rank_choice = int(input(f"Enter rank of token to choose (1-{vocab_size}): "))
if 1 <= rank_choice <= vocab_size:
break
print(f"Please enter a number between 1 and {vocab_size}")
except ValueError:
print("Please enter a valid number")
# Check if maximum context length is reached
if len(idx[0]) >= max_new_tokens:
print(f"Reached maximum context length of {max_new_tokens} tokens")
break
# Select the token based on user's rank choice
# Note: rank_choice=1 is the highest probability token
selected_token_index = sorted_indices[0][rank_choice - 1].unsqueeze(0).unsqueeze(0)
print(f"Selected token: {encoder.decode([selected_token_index[0].item()])} (rank {rank_choice})\n")
# Append sampled index to the running sequence
idx = torch.cat((idx, selected_token_index), dim=1) # (B, T+1)
print("Current sequence:", encoder.decode(idx[0].tolist()), "\n")
return probs
model = BigramLanguageModel()
m = model.to(device)
# print the number of parameters in the model
print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0 or iter == max_iters - 1:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
#print((encoder.decode(m.generate(context, max_new_tokens=4)[0].tolist())))
m.get_heart_of_truth(context, max_new_tokens=2000)[0].tolist()
plt.show()